函数f(x)=acosωx+bsinωx(ω>0)的最小正周期为π/2,当x=π╱6时,有最大值4。
展开全部
1)求a.b.ω的值
T=π/2=2π/ω , ω=4
f(x)=acosωx+bsinωx= acos4x+bsin4x=A sin(4x+arctanb/a ), x=π╱6时,有最大值4。A=4
2π/3+arctanb/a=π/2 ,arctanb/a=-π/6 , , cos(-π/6)=a/A , a=2√3, sin(-π/6)=b/A ,b=-2
2)若0<x<π/4,且f(x)=4/3.求f(x-π/8)的值 ,sin(4x-π/6)=3/16 ,cos(4x-π/6)=√247/16
f(x)=4sin(4x-π/6)
f(x-π/8)=4sin(4x-π/2-π/6)=-4sin[π/2-(4x-π/6)]=-4cos(4x-π/6)=-√247/4
T=π/2=2π/ω , ω=4
f(x)=acosωx+bsinωx= acos4x+bsin4x=A sin(4x+arctanb/a ), x=π╱6时,有最大值4。A=4
2π/3+arctanb/a=π/2 ,arctanb/a=-π/6 , , cos(-π/6)=a/A , a=2√3, sin(-π/6)=b/A ,b=-2
2)若0<x<π/4,且f(x)=4/3.求f(x-π/8)的值 ,sin(4x-π/6)=3/16 ,cos(4x-π/6)=√247/16
f(x)=4sin(4x-π/6)
f(x-π/8)=4sin(4x-π/2-π/6)=-4sin[π/2-(4x-π/6)]=-4cos(4x-π/6)=-√247/4
展开全部
f(x)=acosωx+bsinωx=√(a²+b²)*sin(ωx+φ).
此处φ满足sinφ=a/√(a²+b²),
这个φ是辅助角。最小正周期T=2π/ω,所以π/2=2π/ω,∴ω=4,
x=π/6时,(ωx+φ)=2π/3+φ,∴2π/3+φ=π/2,φ=-π/6.
这样,我们得到了
最大值4=√(a²+b²),sin(-π/6)=a/4,即-½=a/4,
往下自己就可以完成啦。
此处φ满足sinφ=a/√(a²+b²),
这个φ是辅助角。最小正周期T=2π/ω,所以π/2=2π/ω,∴ω=4,
x=π/6时,(ωx+φ)=2π/3+φ,∴2π/3+φ=π/2,φ=-π/6.
这样,我们得到了
最大值4=√(a²+b²),sin(-π/6)=a/4,即-½=a/4,
往下自己就可以完成啦。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)2π/ω=π/2,∴ω=4.
f(x)=√(a^+b^)sin(4x+t),其中t=arctan(a/b),
当x=π╱6时,有最大值4,
∴2π/3+t=π/2,t=-π/6,a/b=-1/√3,条件不足.
f(x)=√(a^+b^)sin(4x+t),其中t=arctan(a/b),
当x=π╱6时,有最大值4,
∴2π/3+t=π/2,t=-π/6,a/b=-1/√3,条件不足.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询