1个回答
展开全部
你好
根据正弦定理
a/sinA=b/sinB=c/sinC=2R
2R(sin² A-sin² C)=(√2*a-b)*sinB
a^2-c^2=√2ab-b^2
∴cosC=(a^2+b^2-c^2)/2ab=√2/2
∴sinC=√(1-cos^2C)=√2/2
S=1/2*absinC
=√2R^2sinAsinB
=√2R^2/2[cos(A-B)-cos(A+B)]
=√2R^2/2[cos(A-B)+cosC]
=√2R^2/2[cos(A-B)+√2/2]
≤√2R^2/2(1+√2/2)
=(1+√2)*R^2/2
S最大=a^2sinC/2=(√2+1)R^2/2
根据正弦定理
a/sinA=b/sinB=c/sinC=2R
2R(sin² A-sin² C)=(√2*a-b)*sinB
a^2-c^2=√2ab-b^2
∴cosC=(a^2+b^2-c^2)/2ab=√2/2
∴sinC=√(1-cos^2C)=√2/2
S=1/2*absinC
=√2R^2sinAsinB
=√2R^2/2[cos(A-B)-cos(A+B)]
=√2R^2/2[cos(A-B)+cosC]
=√2R^2/2[cos(A-B)+√2/2]
≤√2R^2/2(1+√2/2)
=(1+√2)*R^2/2
S最大=a^2sinC/2=(√2+1)R^2/2
追问
=√2R^2sinAsinB
=√2R^2/2[cos(A-B)-cos(A+B)]
这步怎么算?
追答
积化和差公式:
sinαsinβ=-1/2[cos(α+β)-cos(α-β)]
这里的角是A、B
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询