数学归纳法证明不等式(求证:1/(n+1)+1/(n+2)+……+1/3n>5/6)

要过程... 要过程 展开
匿名用户
2013-09-08
展开全部
你这个求和是不是没什么规律啊,最后一个怎么是1/(3n) 1/(n+1)+1/(n+2)+1/(n+3)+…+1/3n>5/6 (n≥2)1.)当n=2时
原式=1/3+1/4+1/5+1/6=57/60 >5/6
2.)假设当n=k时,(k为任意大于2的数)存在
1/(k+1)+1/(k+2)+1/(k+3)+…+1/3k >5/6
3.)所以,当n=k+1时
原式=1/(k+2)+1/(k+3)+1/(k+4)+…+1/3k+1/(3k+1)+1/(3k+2)+1/(3k+3)
(从这里我们可以看出,只要证明1/(3k+1)+1/(3k+2)+1/(3k+3)>1/(k+1)那么这个不等式必然成立)
所以由1/(3k+1)+1/(3k+2)+1/(3k+3)-1/(k+1)=1/(3k+1)-1/(3k+3)+1/(3k+2)-1/(3k+3)>0
不等式得证

中间你可以再加几句啥啥推出啥的(打字太麻烦我就不详细写出来了)然后就可以啦
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式