(2009?杭州)如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC
(2009?杭州)如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.①若正方形的顶点F...
(2009?杭州)如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是5:25:2;②若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB=______.
展开
1个回答
展开全部
解答:解:①如图,根据圆和正方形的对称性可知:GH=
DG=
GF,
H为半圆的圆心,不妨设GH=a,则GF=2a,
在直角三角形FGH中,由勾股定理可得HF=
a.由此可得,半圆的半径为
a,正方形边长为2a,
所以半圆的半径与正方形边长的比是
a:2a=
:2;
②因为正方形DEFG的面积为100,所以正方形DEFG边长为10.
连接EB、AE,OI、OJ,
∵AC、BC是⊙O的切线,
∴CJ=CI,∠OJC=∠OIC=90°,
∵∠ACB=90°,
∴四边形OICJ是正方形,且边长是4,
设BD=x,AD=y,则BD=BI=x,AD=AJ=y,
在直角三角形ABC中,由勾股定理得(x+4)2+(y+4)2=(x+y)2①;
在直角三角形AEB中,
∵∠AEB=90°,ED⊥AB,
∴△ADE∽△BDE∽△ABE,
于是得到ED2=AD?BD,即102=x?y②.
解①式和②式,得x+y=21,
即半圆的直径AB=21.
1 |
2 |
1 |
2 |
H为半圆的圆心,不妨设GH=a,则GF=2a,
在直角三角形FGH中,由勾股定理可得HF=
5 |
5 |
所以半圆的半径与正方形边长的比是
5 |
5 |
②因为正方形DEFG的面积为100,所以正方形DEFG边长为10.
连接EB、AE,OI、OJ,
∵AC、BC是⊙O的切线,
∴CJ=CI,∠OJC=∠OIC=90°,
∵∠ACB=90°,
∴四边形OICJ是正方形,且边长是4,
设BD=x,AD=y,则BD=BI=x,AD=AJ=y,
在直角三角形ABC中,由勾股定理得(x+4)2+(y+4)2=(x+y)2①;
在直角三角形AEB中,
∵∠AEB=90°,ED⊥AB,
∴△ADE∽△BDE∽△ABE,
于是得到ED2=AD?BD,即102=x?y②.
解①式和②式,得x+y=21,
即半圆的直径AB=21.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询