函数 y=x+lnx的单调性是?

 我来答
哆啦休闲日记
高粉答主

2021-10-06 · 关注我不会让你失望
知道小有建树答主
回答量:2479
采纳率:100%
帮助的人:39.7万
展开全部

函数y=x+lnx,定义域为(0,正无穷大)。求导y'=1+(1/x),函数在(0,正无穷大)上单调递减(通过判断1/x的单调性来判断:令T=1/x,T'=-1/(x^2),很容易判断T在(0,正无穷大)恒小于零,所以函数T=1/x为单调递减,y'=1+(1/x)单调递减)。

函数的单调性(monotonicity)也叫函数的增减性,可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。当函数f(x) 的自变量在其定义区间内增大(或减小)时,函数值也随着增大(或减小),则称该函数为在该区间上具有单调性(单调递增或单调递减)。在集合论中,在有序集合之间的函数,如果它们保持给定的次序,是具有单调性的。

如果说明一个函数在某个区间D上具有单调性,则我们将D称作函数的一个单调区间,则可判断出:

D⊆Q(Q是函数的定义域)。

区间D上,对于函数f(x),∀(任取值)x1,x2∈D且x1>x2,都有f(x1) >f(x2)。或,∀ x1,x2∈D且x1>x2,都有f(x1) <f(x2)。

函数图像一定是上升或下降的。

该函数在E⊆D上与D上具有相同的单调性。注意:函数单调性是针对某一个区间而言的,是一个局部性质。因此,说单调性时最好指明区间。

有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。函数的单调性是函数在一个单调区间上的“整体”性质,具有任意性,不能用特殊值代替。

在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中只能在定义域内,通过讨论导数的符号来判断函数的单调区间。如果一个函数具有相同单调性的单调区间不止一个,那么这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开。

考贤辜庚
2020-01-03 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:28%
帮助的人:678万
展开全部
函数y=x+lnx,定义域为(0,正无穷大)。求导y'=1+(1/x),函数在(0,正无穷大)上单调递减(通过判断1/x的单调性来判断:令T=1/x,T'=
-1/(x^2),很容易判断T在(0,正无穷大)恒小于零,所以函数T=1/x为单调递减,y'=1+(1/x)单调递减)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式