a,b,c属于正实数,求a\(b+3c) +b\(8c+4a) +9c\(3a+2b) 紧急求解了!
1个回答
展开全部
a、b、c、d属于R+
求a/(b+3c)+b/(8c+4a)+9c/(3a+2b)的最小值
设b+3c=x,8c+4a=y,3a+2b=z,则
c=(8x-4z+3y)/48,b=(8x+4z-3y)/16,a=(4z-8x+3y)/24
所以原式变为(4z-8x+3y)/24x+(8x+4z-3y)/16y+9(8x-4z+3y)/48z即
z/6x+y/8x+x/2y+z/4y+3x/2z+9y/16z-61/48,利用平均值不等式
原式≥2[√(yz/48x^2)+√(xz/8y^2)+√(27xy/32z^2)]-61/48 不等式当且仅当x:y:z=3:8:6时成立
故原式≥2*(1/3+3/16+3/4)-61/48=47/48
求a/(b+3c)+b/(8c+4a)+9c/(3a+2b)的最小值
设b+3c=x,8c+4a=y,3a+2b=z,则
c=(8x-4z+3y)/48,b=(8x+4z-3y)/16,a=(4z-8x+3y)/24
所以原式变为(4z-8x+3y)/24x+(8x+4z-3y)/16y+9(8x-4z+3y)/48z即
z/6x+y/8x+x/2y+z/4y+3x/2z+9y/16z-61/48,利用平均值不等式
原式≥2[√(yz/48x^2)+√(xz/8y^2)+√(27xy/32z^2)]-61/48 不等式当且仅当x:y:z=3:8:6时成立
故原式≥2*(1/3+3/16+3/4)-61/48=47/48
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询