如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(Ⅰ)求证:AC⊥
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(Ⅰ)求证:AC⊥SD;(Ⅱ)若PD:SP=1:3,侧棱SC上是否存在一点E,...
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(Ⅰ)求证:AC⊥SD;(Ⅱ)若PD:SP=1:3,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.
展开
1个回答
展开全部
证明:(Ⅰ)连BD,设AC交BD于O,由题意SO⊥AC.
在正方形ABCD中,AC⊥BD,所以AC⊥平面SBD,得AC⊥SD.
(Ⅱ)在棱SC上存在一点E,使BE∥平面PAC
取SD中点为N,因为PD:SP=1:3,则PN=PD,
过N作PC的平行线与SC的交点即为E.连BN.
在△BDN中知BN∥PO,又由于NE∥PC,
故平面BEN∥平面PAC,得BE∥平面PAC,
由于SN:NP=2:1,故SE:EC=2:1.
在正方形ABCD中,AC⊥BD,所以AC⊥平面SBD,得AC⊥SD.
(Ⅱ)在棱SC上存在一点E,使BE∥平面PAC
取SD中点为N,因为PD:SP=1:3,则PN=PD,
过N作PC的平行线与SC的交点即为E.连BN.
在△BDN中知BN∥PO,又由于NE∥PC,
故平面BEN∥平面PAC,得BE∥平面PAC,
由于SN:NP=2:1,故SE:EC=2:1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询