线性变换的意义
线性变换的意义:把线性映射写成具体而简明的2维数阵形式后,就成了一种矩阵。进而由线性映射的加法规则和复合规则来分别定义矩阵的加法规则和乘法规则是很自然的想法。
当空间的基变化(坐标系变换)时,线性映射的矩阵也会有规律地变化。在特定的基上研究线性映射,就转化为对矩阵的研究。利用矩阵的乘法,可以把一些线性系统的方程表达得更紧凑(比如把线性方程组用矩阵表达和研究),也使几何意义更明显。
矩阵可以分块计算,可以通过适当的变换以“解耦”(把复杂的变换分解为一些简单变换的组合)。要求出一个线性变换的秩,先写出其矩阵形式几乎是不可避免的一个步骤。
遇到这样的加上了1个常量的非线性映射可以通过增加1个维度的方法,把变换映射写成2×2维的方形矩阵形式,从而在形式上把这一类特殊的非线性映射转化为线性映射。这个办法也适用于处理在高维线性变换上多加了一个常向量的情形。这在计算机图形学和刚体理论(及其相关机械制造和机器人学)中都有大量应用。
扩展资料:
两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。
“线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。
参考资料来源:百度百科—线性变换
2024-04-02 广告
2017-11-11 · 让每个孩子都能正常讲话,是我们最大的心愿
2017-11-11