已知函数f(x)=lnx- a x .(1)当a>0时,判断f(x)在定义域上的单调性;(2)若f(x)在[
已知函数f(x)=lnx-ax.(1)当a>0时,判断f(x)在定义域上的单调性;(2)若f(x)在[1,e]上的最小值为32,求a的值....
已知函数f(x)=lnx- a x .(1)当a>0时,判断f(x)在定义域上的单调性;(2)若f(x)在[1,e]上的最小值为 3 2 ,求a的值.
展开
1个回答
展开全部
(1)函数的定义域为(0,+∞),且f′(x)=
∵a>0,∴f′(x)>0 ∴f(x)在定义域上单调递增; (2)由(1)知,f′(x)=
①若a≥-1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为增函数 ∵f(x)在[1,e]上的最小值为
∴f(x) min =f(1)=-a=
∴a=-
②若a≤-e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上为减函数, ∴f(x) min =f(e)=1-
③若-e<a<-1,令f′(x)=0,得x=-a. 当1<x<-a时,f′(x)<0,∴f(x)在(1,-a)上为减函数; 当-a<x<e时,f′(x)>0,∴f(x)在(-a,e)上为增函数, ∴f(x) min =f(-a)=ln(-a)+1=
综上可知:a=-
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询