已知函数f(x)=lnx- a x .(1)当a>0时,判断f(x)在定义域上的单调性;(2)若f(x)在[

已知函数f(x)=lnx-ax.(1)当a>0时,判断f(x)在定义域上的单调性;(2)若f(x)在[1,e]上的最小值为32,求a的值.... 已知函数f(x)=lnx- a x .(1)当a>0时,判断f(x)在定义域上的单调性;(2)若f(x)在[1,e]上的最小值为 3 2 ,求a的值. 展开
 我来答
文爷君磘燷爇
推荐于2016-12-01 · TA获得超过265个赞
知道答主
回答量:141
采纳率:100%
帮助的人:60.3万
展开全部
(1)函数的定义域为(0,+∞),且f′(x)=
x+a
x 2

∵a>0,∴f′(x)>0
∴f(x)在定义域上单调递增;
(2)由(1)知,f′(x)=
x+a
x 2

①若a≥-1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为增函数
∵f(x)在[1,e]上的最小值为
3
2

∴f(x) min =f(1)=-a=
3
2

∴a=-
3
2
(舍去)
②若a≤-e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上为减函数,
∴f(x) min =f(e)=1-
a
e
=
3
2
,∴a=-
e
2
(舍去).
③若-e<a<-1,令f′(x)=0,得x=-a.
当1<x<-a时,f′(x)<0,∴f(x)在(1,-a)上为减函数;
当-a<x<e时,f′(x)>0,∴f(x)在(-a,e)上为增函数,
∴f(x) min =f(-a)=ln(-a)+1=
3
2
,∴a=-
e

综上可知:a=-
e
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式