以知f(x)=x²+bx+5有最小值1,则f(2)=?
1个回答
展开全部
f(x) = x^2 + bx +3 (1)
x∈[-1,2]
f ' (x) = 2x + b
令:f ' (x) = 0,b
解出:f(x)取最小值的点:x* = - b/2,
将其代入(1) 得到方程:
b^2/4 - b^2/2 +3 = 1,即
b^2 = 8 (2)
b = 土 2√2
舍弃正根(超出x的定义域),b = - 2√2,x* = - b/2 = √2 ,
于是f(x) 的解析式为:
f(x) = x^2 - 2√2x + 3 (3)
验证:min:f(x*) = f (√2) = √2√2 - 2√2√2 + 3 = 2 - 4 + 3 = 1
符合题设.
x∈[-1,2]
f ' (x) = 2x + b
令:f ' (x) = 0,b
解出:f(x)取最小值的点:x* = - b/2,
将其代入(1) 得到方程:
b^2/4 - b^2/2 +3 = 1,即
b^2 = 8 (2)
b = 土 2√2
舍弃正根(超出x的定义域),b = - 2√2,x* = - b/2 = √2 ,
于是f(x) 的解析式为:
f(x) = x^2 - 2√2x + 3 (3)
验证:min:f(x*) = f (√2) = √2√2 - 2√2√2 + 3 = 2 - 4 + 3 = 1
符合题设.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询