1.一条抛物线其形状与抛物线y=2x^2相同,对称轴与抛物线y=(x-2)^2相同,且顶点坐标是3,求这个抛物线.
1.一条抛物线其形状与抛物线y=2x^2相同,对称轴与抛物线y=(x-2)^2相同,且顶点坐标是3,求这个抛物线.2.将抛物线y=x^2向下平移,使以图象与坐标轴的三个交...
1.一条抛物线其形状与抛物线y=2x^2相同,对称轴与抛物线y=(x-2)^2相同,且顶点坐标是3,求这个抛物线.
2.将抛物线y=x^2向下平移,使以图象与坐标轴的三个交点为顶点的三角形是正三角形,求它向下平移了几个单位.
................. 展开
2.将抛物线y=x^2向下平移,使以图象与坐标轴的三个交点为顶点的三角形是正三角形,求它向下平移了几个单位.
................. 展开
1个回答
展开全部
1.因为形状相同所以二次项系数为2,对称轴与抛物线y=(x-2)^2相同,所以对称轴为直线x=2,这两个条件和在一起可得出二次函数的为y=2(x-2)^2+C (c为常数),再利用第三个条件,顶点坐标为3,所以c=3
综上所述,y=2(x-2)^2+3
化简y=2x^2-8x+11
2.设想平移了a
二次方程为y=x^2+a(a<0)
这时与x相交的两个跟间距为X2-X1=根号-4a
由维达定理可算出X2-X1=又因为是正三角形,高为a
所以边长为2倍根号3除3=根号(-4a)
算出来a=-1/3
所以方程为y=x^2-1/3
综上所述,y=2(x-2)^2+3
化简y=2x^2-8x+11
2.设想平移了a
二次方程为y=x^2+a(a<0)
这时与x相交的两个跟间距为X2-X1=根号-4a
由维达定理可算出X2-X1=又因为是正三角形,高为a
所以边长为2倍根号3除3=根号(-4a)
算出来a=-1/3
所以方程为y=x^2-1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询