已知a>0,函数f(x)=-2asin(2x+π6)+2a+b,当x∈[0,π2]时,-5≤f(x)≤1.(1)求常数a,b的值;
已知a>0,函数f(x)=-2asin(2x+π6)+2a+b,当x∈[0,π2]时,-5≤f(x)≤1.(1)求常数a,b的值;(2)设g(x)=f(x+π2)且lg[...
已知a>0,函数f(x)=-2asin(2x+π6)+2a+b,当x∈[0,π2]时,-5≤f(x)≤1.(1)求常数a,b的值;(2)设g(x)=f(x+π2)且lg[g(x)]>0,求g(x)的单调区间.
展开
1个回答
展开全部
(1)∵x∈[0,
],
∴2x+
∈[
,
],
∴sin(2x+
)∈[-
,1],
∴-2asin(2x+
)∈[-2a,a],
∴f(x)∈[b,3a+b],又-5≤f(x)≤1.
∴
,解得
.
(2)f(x)=-4sin(2x+
)-1,
g(x)=f(x+
)=-4sin(2x+
)-1
=4sin(2x+
)-1,
又由lgg(x)>0,得g(x)>1,
∴4sin(2x+
)-1>1,
∴sin(2x+
)>
,
∴
+2kπ<2x+
π |
2 |
∴2x+
π |
6 |
π |
6 |
7π |
6 |
∴sin(2x+
π |
6 |
1 |
2 |
∴-2asin(2x+
π |
6 |
∴f(x)∈[b,3a+b],又-5≤f(x)≤1.
∴
|
|
(2)f(x)=-4sin(2x+
π |
6 |
g(x)=f(x+
π |
2 |
7π |
6 |
=4sin(2x+
π |
6 |
又由lgg(x)>0,得g(x)>1,
∴4sin(2x+
π |
6 |
∴sin(2x+
π |
6 |
1 |
2 |
∴
π |
6 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询