如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证
如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)求证:△CEF为等边三角形;(3...
如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在(2)中画出符合要求的图形,并判断(1)(2)题中的两结论是否依然成立.并说明理由.
展开
1个回答
展开全部
解答:证明:(1)∵△ACM,△CBN是等边三角形,
∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,
在△CAN和△MCB中,
,
∴△CAN≌△MCB(SAS),
∴AN=BM.
(2)∵△CAN≌△MCB,
∴∠CAN=∠CMB,
又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°,
∴∠MCF=∠ACE,
在△CAE和△CMF中,
,
∴△CAE≌△CMF(ASA),
∴CE=CF,
∴△CEF为等腰三角形,
又∵∠ECF=60°,
∴△CEF为等边三角形.
(3)解:连接AN,BM,
∵△ACM、△CBN是等边三角形,
∴AC=MC,BC=CN,∠ACM=∠BCN=60°,
∵∠ACB=90°,
∴∠ACN=∠MCB,
在△ACN和△MCB中,
,
∴△ACN≌△MCB(SAS),
∴AN=MB.
当把MC逆时针旋转90°后,AC也旋转了90°,因此∠ACB=90°,很显然∠FCE>90°,因此三角形FCE绝对不可能是等边三角形,
即结论1成立,结论2不成立.
∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,
在△CAN和△MCB中,
|
∴△CAN≌△MCB(SAS),
∴AN=BM.
(2)∵△CAN≌△MCB,
∴∠CAN=∠CMB,
又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°,
∴∠MCF=∠ACE,
在△CAE和△CMF中,
|
∴△CAE≌△CMF(ASA),
∴CE=CF,
∴△CEF为等腰三角形,
又∵∠ECF=60°,
∴△CEF为等边三角形.
(3)解:连接AN,BM,
∵△ACM、△CBN是等边三角形,
∴AC=MC,BC=CN,∠ACM=∠BCN=60°,
∵∠ACB=90°,
∴∠ACN=∠MCB,
在△ACN和△MCB中,
|
∴△ACN≌△MCB(SAS),
∴AN=MB.
当把MC逆时针旋转90°后,AC也旋转了90°,因此∠ACB=90°,很显然∠FCE>90°,因此三角形FCE绝对不可能是等边三角形,
即结论1成立,结论2不成立.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询