(2010?武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP

(2010?武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=... (2010?武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是(  )A.①②③④B.①②③C.①②④D.①③④ 展开
 我来答
负山当君读书6292
2014-11-15 · TA获得超过105个赞
知道答主
回答量:138
采纳率:66%
帮助的人:129万
展开全部
解:连接DP,并延长DP交AB于Q,连接OP、OD;
∵DC=DP、OC=OP、OD=OD,
∴△DOP≌△DOC,
∴∠DPO=∠DCO=90°,即直线DQ与⊙O相切,且切点为P;
①连接BE,则BE⊥AC;
在等腰Rt△ABC中,BE⊥AC,故AE=EC,(等腰三角形三线合一)
所以①正确;
②由于OP=OP、OC=ON,若PC=PN,就必有△POC≌△PON;
那么必须证得∠CPO=∠NPO;
由于OP⊥DQ,因此∠DPC=∠NPQ,即∠DPA=∠NPQ=∠DPC,
在等腰△ADP和等腰△DPC中,若∠DPA=∠DPC,则∠ADP=∠PDC,显然不成立,
故②错误;
④由于OP⊥DQ,则∠OPQ=90°;
∵∠DAP=∠DPA=∠NPQ,
∴∠NAM=∠OPN=90°-∠DAP=90°-∠NPQ,
又∵∠OPN=∠N,
∴∠NAM=∠N,即ON∥AB;
故④正确;
③连接OE,由于O、E分别是AC、BC的中点,
所以OE是△ABC的中位线,得OE∥AB;
由④得ON∥AB,故N、O、E三点共线,
所以NE是⊙O的直径,连接EP,由圆周角定理可知EP⊥AN;
故③正确;
所以正确的结论是①③④,故选D.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式