函数f(x)的定义域为D,若对于任意x1x2属于D,当x1<x2时,都有f(x1)<=f(x2),则
函数f(x)的定义域为D,若对于任意x1x2属于D,当x1<x2时,都有f(x1)<=f(x2),则称函数f(x)在D上为非减函数,设函数f(x)在【0,1】上为非剪函数...
函数f(x)的定义域为D,若对于任意x1x2属于D,当x1<x2时,都有f(x1)<=f(x2),则称函数f(x)在D上为非减函数,设函数f(x)在【0,1】上为非剪函数,且满足以下三个条件:1.f(0)=0 2.f(x/3)=1/2f(x) 3.f(1-x)=1-f(x),则f(1/3)+f(1/8)=
展开
1个回答
展开全部
f(1/3) + f(3/8) = 3/4
-----------
解析:
当 x=1,
根据条件3:f(1-x) = 1-f(x),得:
f(0) = 1-f(1) = 0
f(1) = 1
根据条件2:f(x/3) = (1/2)*f(x),得:
f(1/3) = (1/2)*f(1) = 1/2
f(1/3) = 1/2
当 0 < x < 1/2, 1/2 < (1-x) < 1, 得 x < (1-x)
因为 f(x) 在 [0,1] 上是非减函数,所以
f(1-x) ≥ f(x)
f(1-x) = 1-f(x) ≥ f(x)
f(x) ≤ 1/2 ............ (条件4)
当 x = 3/8 < 1/2,根据条件4,得:
f(3/8) ≤ 1/2
而且 1/3 < 3/8,所以 1/2 = f(1/3) ≤ f(3/8)
因此,1/2 ≤ f(3/8) ≤ 1/2
得出:f(3/8) = 1/2
根据条件3,
f(1/8) = (1/2)*f(3/8) = (1/2)^2 = 1/4
所以,
f(1/3)+f(3/8) = 1/2+1/4 = 3/4
-----------
解析:
当 x=1,
根据条件3:f(1-x) = 1-f(x),得:
f(0) = 1-f(1) = 0
f(1) = 1
根据条件2:f(x/3) = (1/2)*f(x),得:
f(1/3) = (1/2)*f(1) = 1/2
f(1/3) = 1/2
当 0 < x < 1/2, 1/2 < (1-x) < 1, 得 x < (1-x)
因为 f(x) 在 [0,1] 上是非减函数,所以
f(1-x) ≥ f(x)
f(1-x) = 1-f(x) ≥ f(x)
f(x) ≤ 1/2 ............ (条件4)
当 x = 3/8 < 1/2,根据条件4,得:
f(3/8) ≤ 1/2
而且 1/3 < 3/8,所以 1/2 = f(1/3) ≤ f(3/8)
因此,1/2 ≤ f(3/8) ≤ 1/2
得出:f(3/8) = 1/2
根据条件3,
f(1/8) = (1/2)*f(3/8) = (1/2)^2 = 1/4
所以,
f(1/3)+f(3/8) = 1/2+1/4 = 3/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |