椭圆离心率问题(求答案!!)
若F1F2为椭圆两个焦点,过F2的直线角圆PQ两点,且PF1垂直于PQ,|PF1|=|PQ|,则椭圆的离心率为?...
若F1F2为椭圆两个焦点,过F2的直线角圆PQ两点,且PF1垂直于PQ,|PF1|=|PQ|,则椭圆的离心率为?
展开
1个回答
展开全部
连接F1Q,则:由等腰直角△F1PQ得:
|F1Q|=√2|PF1|
由椭圆定义得:
|F1P|+|PF2|=2a;
|F1Q|+|QF2|=2a;
∴|PF2|=2a-|F1P|
又|F1P|+|PF2|+|F1Q|+|QF2|=4a
|F1P|=|PF2|+|QF2|
|F1Q|=√2|PF1|
∴(√2+2)|PF1|=4a
|PF1|=4a/(√2+2)=(4-2√2)a
|PF2|=2a-|F1P|=(2√2-2)a
由题意:|PF1|²+|PF2|²=|F1F2|²=(2c)²得:
【(4-2√2)a】²+【(2√2-2)a】²=(2c)²
【(2-√2)a】²+【(√2-1)a】²=(c)²
∴(c/a)²=9-6√2=(√6-√3)²
∴c/a=√6-√3
|F1Q|=√2|PF1|
由椭圆定义得:
|F1P|+|PF2|=2a;
|F1Q|+|QF2|=2a;
∴|PF2|=2a-|F1P|
又|F1P|+|PF2|+|F1Q|+|QF2|=4a
|F1P|=|PF2|+|QF2|
|F1Q|=√2|PF1|
∴(√2+2)|PF1|=4a
|PF1|=4a/(√2+2)=(4-2√2)a
|PF2|=2a-|F1P|=(2√2-2)a
由题意:|PF1|²+|PF2|²=|F1F2|²=(2c)²得:
【(4-2√2)a】²+【(2√2-2)a】²=(2c)²
【(2-√2)a】²+【(√2-1)a】²=(c)²
∴(c/a)²=9-6√2=(√6-√3)²
∴c/a=√6-√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
长沙永乐康仪器
2024-03-19 广告
2024-03-19 广告
分液漏斗调速振荡器是新开发综合研制成的很新产品 ,其操作安全简单 ,无级调速垂直还转平稳是植物 、生物制品、遗传、病毒、医学、环保等科研,教学和生产部门不可缺少的实验室设备。垂直工作台上配置有专门使用夹具,能装夹多种试瓶在同一条件下振荡搅拌...
点击进入详情页
本回答由长沙永乐康仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询