操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作.......
1个回答
展开全部
27.
BM+CN=MN
证明:如图,延长AC至M1,使CM1=BM,连结DM1
由已知条件知:∠ABC=∠ACB=60°,∠DBC=∠DCB=30°
∴∠ABD=∠ACD=90°
∵BD=CD
∴Rt△BDM≌Rt△CDM1
∴∠MDB=∠M1DC DM=DM1
∴∠MDM1=(120°-∠MDB)+∠M1DC=120°
又∵∠MDN=60
∴∠M1DN=∠MDN=60
∴△MDN≌△M1DN
∴MN=NM1=NC+CM1=NC+MB
附加题:
CN-BM=MN
证明:如图,在CN上截取,使CM1=BM,连结DM1
∵∠ABC=∠ACB=60°,∠DBC=∠DCB=30°
∴∠DBM=∠DCM1=90°
∵BD=CD∴Rt△BDM≌Rt△CDM1
∴∠MDB=∠M1DC DM=DM1
∵∠BDM+∠BDN=60°
∴∠CDM1+∠BDN=60°
∴∠NDM1=∠BDC-(∠M1DC+∠BDN)=120°-60°=60°
∴∠M1DN=∠MDN
∵AD=AD
∴△MDN≌△M1DN
∴MN=NM1=NC-CM1=NC-MB
BM+CN=MN
证明:如图,延长AC至M1,使CM1=BM,连结DM1
由已知条件知:∠ABC=∠ACB=60°,∠DBC=∠DCB=30°
∴∠ABD=∠ACD=90°
∵BD=CD
∴Rt△BDM≌Rt△CDM1
∴∠MDB=∠M1DC DM=DM1
∴∠MDM1=(120°-∠MDB)+∠M1DC=120°
又∵∠MDN=60
∴∠M1DN=∠MDN=60
∴△MDN≌△M1DN
∴MN=NM1=NC+CM1=NC+MB
附加题:
CN-BM=MN
证明:如图,在CN上截取,使CM1=BM,连结DM1
∵∠ABC=∠ACB=60°,∠DBC=∠DCB=30°
∴∠DBM=∠DCM1=90°
∵BD=CD∴Rt△BDM≌Rt△CDM1
∴∠MDB=∠M1DC DM=DM1
∵∠BDM+∠BDN=60°
∴∠CDM1+∠BDN=60°
∴∠NDM1=∠BDC-(∠M1DC+∠BDN)=120°-60°=60°
∴∠M1DN=∠MDN
∵AD=AD
∴△MDN≌△M1DN
∴MN=NM1=NC-CM1=NC-MB
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询