已知等差数列{a n }的首项a 1 =3,公差d≠0,其前n项和为S n ,且a 1 ,a 4 ,a 13 成等比数列.(Ⅰ)求
已知等差数列{an}的首项a1=3,公差d≠0,其前n项和为Sn,且a1,a4,a13成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)证明:1S1+1S2+…1Sn<3...
已知等差数列{a n }的首项a 1 =3,公差d≠0,其前n项和为S n ,且a 1 ,a 4 ,a 13 成等比数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)证明: 1 S 1 + 1 S 2 +… 1 S n < 3 4 .
展开
由a 1 ,a 4 ,a 13 成等比数列,得 a 4 2 = a 1 a 13 , 即 ( a 1 +3d ) 2 = a 1 ( a 1 +12d) ,所以 a 1 2 +6 a 1 d+9 d 2 = a 1 2 +12 a 1 d . 9d 2 =6a 1 d, a 1 = d .则 d= a 1 = ×3=2 . (Ⅰ)a n =a 1 +(n-1)d=3+2(n-1)=2n+1; (Ⅱ) S n =n a 1 + =3n+ n 2 -n=n(n+2) . 则 = = ( - ) , 所以 + +… = (1- + - + - +…+ - + - ) = (1+ - - )= - - < . |
收起
为你推荐: