在线等!!!!!在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)∕2n

(1)设bn=an/n,求数列{bn}的通项公式。(2)求数列{an}的前n项和Sn。... (1)设bn=an/n,求数列{bn}的通项公式。
(2)求数列{an}的前n项和Sn。
展开
时亦说
2010-04-14 · TA获得超过2.2万个赞
知道大有可为答主
回答量:2759
采纳率:75%
帮助的人:1587万
展开全部
解:(1)
A(n+1)=(n+1)An/n+(n+1)/2^n
A(n+1)/(n+1)=An/n+1/2^n
依此类推
An/n=A(n-1)/(n-1)+1/2^(n-1)
A(n-1)/(n-1)=A(n-2)/(n-2)+1/2^(n-2)
……
A2/2=A1/1+1/2^1
上式相加,相同项消去得
An/n=A1/1+(1/2^1+1/2^2+……+1/2^(n-1))
=1+1/2×(1-(1/2)^(n-1))/(1-1/2)
=2-1/2^n
即Bn=2-1/2^n

(2)
An/n=2-1/2^n
An=2n-n/2^n
{An}分为两部分,2n是等差数列,n/2^n是等差数列与等比数列相乘
第一部分求和
Sn1=(2+2n)n/2=(n+1)n
第二部分求和
Sn2=1/2+2/4+3/8+……+n/2^n
两边同乘2
2Sn2=1+2/2+3/4+……+n/2^(n-1)
两式错位相减
2Sn2-Sn2=1+[1/2+1/4+1/8……+1/2^(n-1)]-n/2^n
=1+1/2×(1-(1/2)^(n-1))/(1-1/2)-n/2^n
=2-(n+2)/2^n
Sn=Sn1-Sn2
=n^2+n-2+(n+2)/2^n
=(n-1)(n+2)+(n+2)/2^n
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式