已知函数y=f(x)是(-1,1)上的偶函数,且在区间(-1,0)上是单调递增的,A,B,C是锐角三角形△ABC的
已知函数y=f(x)是(-1,1)上的偶函数,且在区间(-1,0)上是单调递增的,A,B,C是锐角三角形△ABC的三个内角,则下列不等式中一定成立的是()A.f(sinA...
已知函数y=f(x)是(-1,1)上的偶函数,且在区间(-1,0)上是单调递增的,A,B,C是锐角三角形△ABC的三个内角,则下列不等式中一定成立的是( )A.f(sinA)>f(sinB)B.f(sinA)>f(cosB)C.f(cosC)>f(sinB)D.f(sinC)>f(cosB)
展开
1个回答
展开全部
对于A,由于不能确定sinA、sinB的大小,
故不能确定f(sinA)与f(sinB)的大小,可得A不正确;
对于B,∵A,B,C是锐角三角形△ABC的三个内角,
∴A+B>
,得A>
-B
注意到不等式的两边都是锐角,两边取正弦,
得sinA>sin(
-B),即sinA>cosB
∵f(x)定义在(-1,1)上的偶函数,且在区间(-1,0)上单调递增
∴f(x)在(0,1)上是减函数
由sinA>cosB,可得f(sinA)<f(cosB),故B不正确
对于C,∵A,B,C是锐角三角形△ABC的三个内角,
∴B+C>
,得C>
-B
注意到不等式的两边都是锐角,两边取余弦,
得cosC<cos(
-B),即cosC<sinB
∵f(x)在(0,1)上是减函数
由cosC<sinB,可得f(cosC)>f(sinB),得C正确;
对于D,由对B的证明可得f(sinC)<f(cosB),故D不正确
故选:C
故不能确定f(sinA)与f(sinB)的大小,可得A不正确;
对于B,∵A,B,C是锐角三角形△ABC的三个内角,
∴A+B>
π |
2 |
π |
2 |
注意到不等式的两边都是锐角,两边取正弦,
得sinA>sin(
π |
2 |
∵f(x)定义在(-1,1)上的偶函数,且在区间(-1,0)上单调递增
∴f(x)在(0,1)上是减函数
由sinA>cosB,可得f(sinA)<f(cosB),故B不正确
对于C,∵A,B,C是锐角三角形△ABC的三个内角,
∴B+C>
π |
2 |
π |
2 |
注意到不等式的两边都是锐角,两边取余弦,
得cosC<cos(
π |
2 |
∵f(x)在(0,1)上是减函数
由cosC<sinB,可得f(cosC)>f(sinB),得C正确;
对于D,由对B的证明可得f(sinC)<f(cosB),故D不正确
故选:C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询