设函数f(x)的定义域为(-l,l),证明必存在(-l,l)上的偶函数g(x)及奇函数h(x),使得f(x)=g(x)+h(x)

证明过程:假若g(x)、h(x)存在,使得f(x)=g(x)+h(x),(1),且g(-x)=g(x),h(-x)=-h(x)于是有f(-x)=g(-x)+h(-x)=g... 证明过程:假若g(x)、h(x)存在,使得f(x)=g(x)+h(x),(1),
且g(-x)=g(x),h(-x)=-h(x)
于是有f(-x)=g(-x)+h(-x)=g(x)-h(x),(2)
利用(1)、(2)式,g(x)=[f(x)+f(-x)]/2
h(x)=[f(x)-f(-x)]/2
则 g(x)+h(x)=f(x),
g(-x)=[f(-x)+f(x)]/2=g(x),
h(-x)=[f(-x)-f(x)]/2=h(x).
这道题的证明过程我看不懂,他先是假设g(x)、h(x)存在,满足f(x)=g(x)+h(x),得出式子(2),又用假设得出的结论(1)、(2)去证明原来假设的句子成立,那岂不是怎么证都是正确的。实在搞不懂,谁能详细说一下这个证明过程是怎么回事,谢谢
最后一行应该是h(-x)=[f(-x)-f(x)]/2=-h(x)
展开
4991064
2010-07-28
知道答主
回答量:1
采纳率:0%
帮助的人:0
展开全部
第一步是假设证明的问题是条件 即是用的反证法.
第二步是可以用第一步推出来的
后面的是用前面的条件推出来的,把最后的结果的要证明的比较看矛盾不就可以了
xcs63
2010-07-27 · TA获得超过922个赞
知道答主
回答量:150
采纳率:0%
帮助的人:197万
展开全部
证明过程的前一部分是,先假设g(x)、h(x)存在,根据条件求得
g(x)=[f(x)+f(-x)]/2,h(x)=[f(x)-f(-x)]/2.
后一部分是对求得的g(x)、h(x)进行验证。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
珍珠雪晶
2010-07-28
知道答主
回答量:2
采纳率:0%
帮助的人:0
展开全部
s
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式