关于x的方程sin²x+acosx-2a=0有实数解,则实数a的取值范围是
3个回答
展开全部
代换一下 把SIN^2改成1-cos^2 二次函数了 注意定义域-1,1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
关于x的方程sin²x+acosx-2a=0有实数解,则实数a的取值范围是
解:把原方程改写为: cos²x-acosx+2a-1=0
令cosx=u, -1≤u≤1,则方程变为u²-au+2a-1=0...........(1)
如果(1)有实数解,则必须满足两个条件:
❶判别式△=a²-4(2a-1)=a²-8a+4=(a-4)²-12≥0,即a≤4-2√3或a≥4+2√3.
❷两根之和-2≤u₁+u₂≤2,由于u₁+u₂=a,故有 -2≤a≤2
❶∩❷ = a∈[-2, 4-2√3]
修改回答
解:把原方程改写为: cos²x-acosx+2a-1=0
令cosx=u, -1≤u≤1,则方程变为u²-au+2a-1=0...........(1)
如果(1)有实数解,则必须满足两个条件:
❶判别式△=a²-4(2a-1)=a²-8a+4=(a-4)²-12≥0,即a≤4-2√3或a≥4+2√3.
❷两根之和-2≤u₁+u₂≤2,由于u₁+u₂=a,故有 -2≤a≤2
❶∩❷ = a∈[-2, 4-2√3]
修改回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询