展开全部
思路解析:依据判定定理,在平面EFGH内寻找与BC、AD平行的直线,利用线面平行的性质即得.
证明:因为截面EFGH是一个平行四边形,所以EF∥GH.
又因为GH在平面DCB内,EF不在平面DCB内,所以EF∥平面DCB.
又平面ABC过直线EF且与平面DCB相交于BC.
所以EF∥BC,EF面EFGH.
所以BC∥平面EFGH.
同理,可证AD∥平面EFGH.
方法归纳 反复运用线面平行的判定定理和性质定理,实现线面平行与线线平行的相互转化,在同一道题中是常用的.
巧妙变式 若将本题中E、F、G、H特殊化,即E、F、G、H分别是AB、AC、DC、DB的中点,可由对应线段成比例推证平行,转化为利用三角形的中位线定理证直线平行,然后证明本题的结论成立.
证明:∵E、F分别是AB、AC的中点,∴EFBC.
同理,∵G、H分别是DC、DB的中点,
∴GHBC.
证明:因为截面EFGH是一个平行四边形,所以EF∥GH.
又因为GH在平面DCB内,EF不在平面DCB内,所以EF∥平面DCB.
又平面ABC过直线EF且与平面DCB相交于BC.
所以EF∥BC,EF面EFGH.
所以BC∥平面EFGH.
同理,可证AD∥平面EFGH.
方法归纳 反复运用线面平行的判定定理和性质定理,实现线面平行与线线平行的相互转化,在同一道题中是常用的.
巧妙变式 若将本题中E、F、G、H特殊化,即E、F、G、H分别是AB、AC、DC、DB的中点,可由对应线段成比例推证平行,转化为利用三角形的中位线定理证直线平行,然后证明本题的结论成立.
证明:∵E、F分别是AB、AC的中点,∴EFBC.
同理,∵G、H分别是DC、DB的中点,
∴GHBC.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询