已知函数f(x)是定义域为R的奇函数。且它的图像关于x=1对称。

(1)求f(0)的值。(2)证明:f(x)是周期函数.(3)若f(x)=x(0<x≤1),求x∈R时函数f(x)的解析式,... (1)求f(0)的值。(2)证明:f(x)是周期函数. (3)若f(x)=x(0<x≤1),求x∈R时函数f(x)的解析式, 展开
fnxnmn
推荐于2016-12-01 · TA获得超过5.8万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6433万
展开全部
由于f(x)为奇函数,且定义域为R ,所以有f(x)= - f(-x),所以就有f(0)=-f(-0),
化简:2f(0)=0,从而得:f(0)=0

因为f(x)是定义域为R的奇函数,所以有f(x)= - f(-x)。
因为图像关于直线x=1对称,所以f(x)= f(2-x),
所以f(2-x)=- f(-x),
用X代换-X,可以得到f(2+x)=- f(x),
用2+X代换X所以f(4+x)=-f(2+x)=f(x),所以f(x)是以4为周期的函数

因为f(x)=x(0<x≤1), f(0)=0,
所以当0≤X≤1时,f(x)=x ,而函数 是奇函数,所以f(x)=x,x∈[-1,1],
由f(x)的图像关于直线x=1对称,知x∈[1,3]时,f(x)= f(2-x)=-x+2
且知其周期为4,故得f(x)解析式为:
. f(x)=f(x-4n)=x-4n,x∈[4n-1, 4n+1], n∈Z
f(x) =f(x-4n)=-(x-4n)+2=-x+4n+2. x∈[4n+1,4n+3],n∈Z
lasang14
2011-08-08 · TA获得超过367个赞
知道答主
回答量:331
采纳率:0%
帮助的人:155万
展开全部
,求x∈R时,函数f(x)的解析式, 1、由于f(x)为奇函数,且定义f(-x)。 因为图像关于直线x=1对称,所以f(x)= f(2-x),所以f(2-x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-08-08
展开全部
(1):f(0)=0
(2):因为f(x)=-f-(x),
f(x)=f(2-x)
所以f(x)=-f(x+2)=f(x+4)
所以y=f(x)是以T=4的周期函数
(3):???
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式