已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f(π/6)|对x∈R恒成立,且f(π2)>f
http://www.jyeoo.com/math2/ques/detail/dff4c04f-c45c-4f0e-a14f-6fe857eadbb6解答中第五行“又f(...
http://www.jyeoo.com/math2/ques/detail/dff4c04f-c45c-4f0e-a14f-6fe857eadbb6
解答中第五行“又f(π/2) >f(π),即sinφ<0”是为什么? 展开
解答中第五行“又f(π/2) >f(π),即sinφ<0”是为什么? 展开
2个回答
展开全部
已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f(π/6)|对x∈R恒成立,且f(π/2)>f(π),则f(x)的单调递增区间是
解析:∵函数f(x)=sin(2x+φ),f(x)≤|f(π/6)|对x∈R恒成立
∴f(x)在x=π/6处取最值
∴f(π/6x)=sin(π/3+φ)=±1==>π/3+φ=±π/2==>φ=-5π/6或φ=π/6
又∵f(π/2)>f(π)
∴φ=-5π/6==>f(x)=sin(2x-5π/6)
单调增区间:2kπ-π/2<=2x-5π/6<=2kπ+π/2==>kπ+π/6<=x<=kπ+2π/3
f(π/2)>f(π)这个条件是用来选择φ=-5π/6或φ=π/6
只有当φ=-5π/6==>f(x)=sin(2x-5π/6)时,才满足f(π/2)>f(π)。
解析:∵函数f(x)=sin(2x+φ),f(x)≤|f(π/6)|对x∈R恒成立
∴f(x)在x=π/6处取最值
∴f(π/6x)=sin(π/3+φ)=±1==>π/3+φ=±π/2==>φ=-5π/6或φ=π/6
又∵f(π/2)>f(π)
∴φ=-5π/6==>f(x)=sin(2x-5π/6)
单调增区间:2kπ-π/2<=2x-5π/6<=2kπ+π/2==>kπ+π/6<=x<=kπ+2π/3
f(π/2)>f(π)这个条件是用来选择φ=-5π/6或φ=π/6
只有当φ=-5π/6==>f(x)=sin(2x-5π/6)时,才满足f(π/2)>f(π)。
追问
你知道我在问什么吗?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询