已知等差数列{an}满足∶a3=7,a5+a7=26,{an}的前几项和为sn令bn=2的n次方乘an,求数列前n项和Tn
2个回答
展开全部
∵a5 = a3 + 2d
a7 = a3 + 4d
∴a5+a7= 2a3 + 6d = 26
又∵a3 = 7
∴d = 2
∴a1 = a3 - 2d = 3
∴an = a1 + (n-1)d = 3 + 2(n-1) = 2n + 1
∴bn = (2n+1)×2^n
Tn = 3×2 + 5×2^2 + 7×2^3 + …… + (2n+1)×2^n
2Tn = 3×2^2 + 5×2^3 + …… + (2n-1)×2^n + (2n+1)×2^(n+1)
两式相减,得:
Tn = (2n+1)×2^(n+1) - 3×2 - [2^3 + 2^4 + …… + 2^(n+1)]
= (2n+1)×2^(n+1) - 6 - 8[1-2^(n-1)]/(1-2)
= (2n+1)×2^(n+1) - 6 - 8×2^(n-1) + 8
= (2n+1)×2^(n+1) - 6 - 2×2^(n+1) + 8
= (2n-1)×2^(n+1) + 2
a7 = a3 + 4d
∴a5+a7= 2a3 + 6d = 26
又∵a3 = 7
∴d = 2
∴a1 = a3 - 2d = 3
∴an = a1 + (n-1)d = 3 + 2(n-1) = 2n + 1
∴bn = (2n+1)×2^n
Tn = 3×2 + 5×2^2 + 7×2^3 + …… + (2n+1)×2^n
2Tn = 3×2^2 + 5×2^3 + …… + (2n-1)×2^n + (2n+1)×2^(n+1)
两式相减,得:
Tn = (2n+1)×2^(n+1) - 3×2 - [2^3 + 2^4 + …… + 2^(n+1)]
= (2n+1)×2^(n+1) - 6 - 8[1-2^(n-1)]/(1-2)
= (2n+1)×2^(n+1) - 6 - 8×2^(n-1) + 8
= (2n+1)×2^(n+1) - 6 - 2×2^(n+1) + 8
= (2n-1)×2^(n+1) + 2
展开全部
a3=7 a5+a7=26
so,an=6n-11
bn=2^n*an=2^n(6n-11)
Tn=b1+b2+⋯⋯+bn然后用裂项求和就可以了
so,an=6n-11
bn=2^n*an=2^n(6n-11)
Tn=b1+b2+⋯⋯+bn然后用裂项求和就可以了
追问
详细一点的过程可以不....这里学的不是特别好,看过程我会更明白一些,麻烦了
追答
Tn=2(6-11)+2^2(6*2-11)+2^3(6*3-11)+⋯⋯+2^(n-1)(6(n-1)-11)+2^n(6n-11) ⋯⋯1式
1式乘以2(因为是一个等比和一个等差的乘积形式,so用等比的公比乘,这就是裂项求和)
Tn'= 2^2(6-11)+2^3(6*2-11)+⋯⋯+2^n(6(n-1)-11)+2^(n+1)(6n-11)⋯⋯2式
用1式减2式,就可以了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询