求解一道关于高等代数的题
第一题:设A,B都是实数域上的n阶方阵,求证:(1)若存在复数u,使得det(A+uB)不等于0,则一定存在实数v,使得det(A+vB)不等于0;(2)若存在复可逆阵P...
第一题:
设A,B都是实数域上的n阶方阵,求证:
(1)若存在复数u,使得det(A+uB)不等于0,则一定存在实数v,使得det(A+vB)不等于0;
(2)若存在复可逆阵P,使得P-1AP=B,则一定存在实可逆阵Q,使得Q-1AQ=B 展开
设A,B都是实数域上的n阶方阵,求证:
(1)若存在复数u,使得det(A+uB)不等于0,则一定存在实数v,使得det(A+vB)不等于0;
(2)若存在复可逆阵P,使得P-1AP=B,则一定存在实可逆阵Q,使得Q-1AQ=B 展开
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询