在△ABC中证明余弦定理a2=b2+c2-2bccos(abc的2都在上面)
展开全部
我们把顶点C置于原点,CA落在x轴的正半轴上,由于△ABC的AC=b,CB=a,AB=c,则A,B,C点的坐分别为A(b,0),B(acos C,asin C),C(0,0).
请同们分析B点坐标是怎样得来的.
∠ ACB=∠C,CB为∠ACB的终边,B为CB上一点,设B的坐标为(x,y),则sinC= =,cos C==所以B点坐标x=acosC,y=asinC.
回答很准确,A,B两点间的距离如何求?
|AB|2=(acosC-b)2+(asinC-0)2
=a2cos2C-2abcosC+b2-a2sin2C
=a2+b2-2abcos C,
即c2=a2+b2-2abcos C.同理:a2=b2+c2-2bccosA
请同们分析B点坐标是怎样得来的.
∠ ACB=∠C,CB为∠ACB的终边,B为CB上一点,设B的坐标为(x,y),则sinC= =,cos C==所以B点坐标x=acosC,y=asinC.
回答很准确,A,B两点间的距离如何求?
|AB|2=(acosC-b)2+(asinC-0)2
=a2cos2C-2abcosC+b2-a2sin2C
=a2+b2-2abcos C,
即c2=a2+b2-2abcos C.同理:a2=b2+c2-2bccosA
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询