已知函数f(x)=ax+1/x+2在区间﹙-2,+∞﹚上是增函数,求a的取值范围 本题所给区间是否只要是
负无穷到零并上零到正无穷,答案都是a大于二分之一。就是说只要反比例函数的系数为负,那么它就一定减呢。...
负无穷到零并上零到正无穷,答案都是a大于二分之一。就是说只要反比例函数的系数为负,那么它就一定减呢。
展开
展开全部
f(x)=(ax+1)/(x+2)
=[a(x+2)+1-2a]/(x+2)
=a+(1-2a)/(x+2)
若函数f(x)在区间﹙-2,+∞﹚上是增函数
则对任意的-2<x1<x2,
总有f(x1)-f(x2)<0恒成立
f(x1)-f(x2)
=(1-2a)/(x1+2)-(1-2a)/(x2+2)
=(1-2a)(x2-x1)/[(x1+2)(x2+2)]<0恒成立
∵-2<x1<x2,
∴x2-x1>0 ,(x1+2)(x2+2)>0,
则需1-2a<0,即a>1/2
∴a的取值范围 是(1/2,+∞)
另法:
f(x)的图像是由反比例函数y=(1-2a)/x平移而来
向左平移2各单位,在向上平移a各单位就是f(x)的图像
f(x)若是在区间﹙-2,+∞﹚上是增函数
则需y=(1-2a)/x在(0,+∞)递增,需反比例系数1-2a<0
=[a(x+2)+1-2a]/(x+2)
=a+(1-2a)/(x+2)
若函数f(x)在区间﹙-2,+∞﹚上是增函数
则对任意的-2<x1<x2,
总有f(x1)-f(x2)<0恒成立
f(x1)-f(x2)
=(1-2a)/(x1+2)-(1-2a)/(x2+2)
=(1-2a)(x2-x1)/[(x1+2)(x2+2)]<0恒成立
∵-2<x1<x2,
∴x2-x1>0 ,(x1+2)(x2+2)>0,
则需1-2a<0,即a>1/2
∴a的取值范围 是(1/2,+∞)
另法:
f(x)的图像是由反比例函数y=(1-2a)/x平移而来
向左平移2各单位,在向上平移a各单位就是f(x)的图像
f(x)若是在区间﹙-2,+∞﹚上是增函数
则需y=(1-2a)/x在(0,+∞)递增,需反比例系数1-2a<0
追问
我是说,如果取值范围不是2到正无穷了,还是这个答案么
追答
你的问法不对
f(x)在(-∞,-2)上是增函数,与f(x)在区间﹙-2,+∞﹚上是增函数
是一致的 ,结果还是一样的
但不能说f(x)在(-∞,-2)U(-2,+∞)上是增函数,这种说法是错的
只能说f(x)在(-∞,-2)和 (-2,+∞)上分别是增函数,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询