证明1+2*2!+3*3!+4*4!+5*5!+6*6!+7*7!+到+n*n!=n(n+1)!-1
4个回答
展开全部
此题可以用数学归纳法证明
步骤
第一数学归纳法。若(1) p(m)为真(其中m为某一确定的自然数)(2) p(k)为真蕴含p(k+1)为真(其中k为不小于m的任一自然数)则对一切不小于m的自然数n,p(n)为真。第二数学归纳法。如果(1) p(m)为真(其中m为某一确定的自然数)(2) 对任一不小于m的自然数k,m=<j=<k,p(j)为真蕴含p(k+1)为真则对一切不小于m的自然数n,p(n)为真。
这道题
证明:
1)当n=1时1=1成立
2)设n=k时仍成立,即1+2*2!+3*3!+4*4!+5*5!+6*6!+7*7!+……+k*k!=k(k+1)!-1
当n=k+1时
1+2*2!+3*3!+4*4!+5*5!+6*6!+7*7!+……+(k+1)*(k+1)!
=k*(k+1)!+(k+1)(k+1)!-1
=(k+1)![k+(k+1)]-1
=(k+1)!(2k+1)-1明显不是 为错误
步骤
第一数学归纳法。若(1) p(m)为真(其中m为某一确定的自然数)(2) p(k)为真蕴含p(k+1)为真(其中k为不小于m的任一自然数)则对一切不小于m的自然数n,p(n)为真。第二数学归纳法。如果(1) p(m)为真(其中m为某一确定的自然数)(2) 对任一不小于m的自然数k,m=<j=<k,p(j)为真蕴含p(k+1)为真则对一切不小于m的自然数n,p(n)为真。
这道题
证明:
1)当n=1时1=1成立
2)设n=k时仍成立,即1+2*2!+3*3!+4*4!+5*5!+6*6!+7*7!+……+k*k!=k(k+1)!-1
当n=k+1时
1+2*2!+3*3!+4*4!+5*5!+6*6!+7*7!+……+(k+1)*(k+1)!
=k*(k+1)!+(k+1)(k+1)!-1
=(k+1)![k+(k+1)]-1
=(k+1)!(2k+1)-1明显不是 为错误
更多追问追答
追问
!是数学符号 是数学2-3中的阶乘
追答
我知道 但是结论有问题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
n*n!=[(n+1)-1]*n!
=(n+1)*n!-n!
=(n+1)!-n!
所以原式=2!-1!+3!-2!+……+(n+1)!-n!=(n+1)!-1
题目不对
=(n+1)*n!-n!
=(n+1)!-n!
所以原式=2!-1!+3!-2!+……+(n+1)!-n!=(n+1)!-1
题目不对
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=2!-1!+3!-2!+4!-3!+……………………(n+1)!-n!=(n+1)!-1
题目多打了个n吧
题目多打了个n吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询