设A为n阶可逆矩阵,α1,α2,…αn为 n个线性无关的n维列向量.?
1个回答
展开全部
设 k1Aα1+k2Aα2+…+knAαn = 0
则 A(k1α1+k2α2+…+knαn) = 0
因为A可逆,等式两边左乘A^-1,得
k1α1+k2α2+…+knαn = 0
由已知 α1,α2,…αn 线性无关
所以 k1=...=kn
所以 Aα1,Aα2,…Aαn 线性无关.
--这个你应该会的,10,设k1Aα1+k2Aα2+…+knAαn=0
即A(k1α1+k2α2+…+knαn)=0
因为A为n阶可逆矩阵
所以A∧-1A(k1α1+k2α2+…+knαn)=0
即k1α1+k2α2+…+knαn=0
而α1,α2,…αn为 n个线性无关的n维列向量
所以k1=k2=k3=…=kn=0
则向量Aα1,Aα2,…Aαn线性无关,1,设A为n阶可逆矩阵,α1,α2,…αn为 n个线性无关的n维列向量.
证明向量Aα1,Aα2,…Aαn线性无关.
则 A(k1α1+k2α2+…+knαn) = 0
因为A可逆,等式两边左乘A^-1,得
k1α1+k2α2+…+knαn = 0
由已知 α1,α2,…αn 线性无关
所以 k1=...=kn
所以 Aα1,Aα2,…Aαn 线性无关.
--这个你应该会的,10,设k1Aα1+k2Aα2+…+knAαn=0
即A(k1α1+k2α2+…+knαn)=0
因为A为n阶可逆矩阵
所以A∧-1A(k1α1+k2α2+…+knαn)=0
即k1α1+k2α2+…+knαn=0
而α1,α2,…αn为 n个线性无关的n维列向量
所以k1=k2=k3=…=kn=0
则向量Aα1,Aα2,…Aαn线性无关,1,设A为n阶可逆矩阵,α1,α2,…αn为 n个线性无关的n维列向量.
证明向量Aα1,Aα2,…Aαn线性无关.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询